Home
Class 12
MATHS
If a > 1, b > 1, then the minimum value ...

If `a > 1, b > 1,` then the minimum value of `log_b a + log_a b` is

A

0

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If agt1,bgt1,cgt1,dgt1 then the minimum value of log_(b)a+log_(a)b+log_(d)c+log_(c)d , is

If a,b,c,d in R^(+)-{1} , then the minimum value of log_(d) a+ log_(c)b+log _(a)c+log_(b)d is

If a,b,c,d in R^(+-){1}, then the minimum value of (log)_(d)a+(log)_(b)d+(log)_(a)c+(log)_(c)b is (a)4(b)2(c)1( d) none of these

If a,b in(0,1) ,then minimum value of log_(a)(ab)-log_(b)((b)/(a)) is

If a, b, c are positive real numbers, then the minimum value of a^(logb-logc)+b^(logc-loga)+c^(loga-logb) is

If (a^(log_b x))^2-5 a^(log_b x)+6=0, where a >0, b >0 & a b!=1, then the value of x can be equal to (a) 2^(log_b a) (b) 3^(log_a b) (c) b^(log_a2) (d) a^(log_b3)

The value of a^((log_b(log_bx))/(log_b a)), is