Home
Class 12
MATHS
Let tn =n.(n!) Then sum(n=1)^(15) tn is...

Let `t_n =n.(n!)` Then `sum_(n=1)^(15) t_n` is equal to

A

15!-1

B

15!+1

C

16!-1

D

16!+1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If in a series t_n=n/((n+1)!) then sum_(n=1)^20 t_n is equal to :

if in a series t_(n)=(n+1)/((n+2)!) then sum_(n=0)^(10)t_(n) equal to

sum_(n=1)^(99) n! (n^2 + n+1) is equal to :

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

If t_(n) = 1/((n+1)!) , then sum_(n=1)^(infty) t_(n)=

a_ (n) = int_ (0) ^ ((pi) / (2)) (1-sin t) ^ (n) sin2tdt ten lim_ (n rarr oo) sum_ (n = 1) ^ (n) (a_ ( n)) / (n) is equal to

Let T_(n) be the n^(th) term of a sequence for n=1,2,3,4... if 4T_(n+1)=T_(n) and T_(5)=(1)/(2560) then the value of sum_(n=1)^(oo)(T_(n)*T_(n+1)) is equal to

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2))/(6), then the value of sum_(r=1)^(oo)((1)/(T_(r))) is equal to