Home
Class 12
MATHS
If in a series tn=n/((n+1)!) then sum(n...

If in a series `t_n=n/((n+1)!)` then `sum_(n=1)^20 t_n` is equal to :

A

`(20 !-1)/(20!)`

B

`(21!-1)/(21!)`

C

`(19!-1)/(20!)`

D

`(21!-1)/(20!)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

if in a series t_(n)=(n+1)/((n+2)!) then sum_(n=0)^(10)t_(n) equal to

Let t_(n)=n.(n!) Then sum_(n=1)^(15)t_(n) is equal to

sum_(n=1)^(99) n! (n^2 + n+1) is equal to :

If t_(n) = 1/((n+1)!) , then sum_(n=1)^(infty) t_(n)=

In a series, T_n = 3 -n , then S_5 = ________.

If t_(n)=(n+2)/((n+3)!) then find the value of sum_(n=5)^(20)t_(n)

For the series sum t_(n,) S_n=sum_(n=1)^nt_n=2t_n-1 . Is the series geometric ? If so, find the sum to n terms of the series.