Home
Class 12
MATHS
if r>1 and x=a+a/r+a/r^2+..................

if `r>1` and `x=a+a/r+a/r^2+...............oo , y=b-b/r+b/r^2-.................oo` and`z=c+c/r^2+c/r^4+..............oo` then `(xy)/z`

A

`(ab)/c`

B

`(ac)/b`

C

`(bc)/a`

D

`a/(bc)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

if r>1 and x=a+(a)/(r)+(a)/(r^(2))+.........oo,y=b-(b)/(r)+(b)/(r^(2))-(b)/(r^(2)) and z=c+(c)/(r^(2))+(c)/(r^(4))+............oo then (xy)/(z)

If r>1 and x=a+(a)/(r)+(a)/(r^(2))............,y=b+(b)/(r)+(b)/(r^(2))...... and z=b+(b)/(r)+(b)/(r^(2))+.......... Then value of (xy)/(z^(2)) is

If x=a+(a)/(r)+(a)/(r^(2))+...oo,y=b-(b)/(r)+(b)/(r^(2))+...oo, and z=c+(c)/(r^(2))+(c)/(r^(4))+...oo prove that (xy)/(z)=(ab)/(c)

"If "x=a+(a)/(r)+(a)/(r^(2))+...oo,y=b-(b)/(r)+(b)/(r^(2))-...oo,"and "z=c+(c)/(r^(2))+(c)/(r^(4))+...oo," then prove that "(xy)/(z)=(ab)/(c).

If A=1+r^(2)+r^(2a)+...oo=a and B=1+r^(b)+r^(2b)+...oo=b then (a)/(b) is equal to

If x=r sin A cos C,quad y=r sin A sin C and z=r cos A, prove that r^(2)=x^(2)+y^(2)+z^(2)

If a=sum_(n=r)^( oo)(1)/(r^(4)) then sum_(r=1)^(oo)(1)/((2r-1)^(4))=

If a=sum_(r=1)^oo(1/r)^2, b=sum_(r=1)^oo1/((2r-1)^2), then a/b= (A) 5/4 (B) 4/5 (C) 3/4 (D) none of these