Home
Class 12
MATHS
If ai > 0 for i=1,2,…., n and a1 a2 … a...

If `a_i > 0` for i=1,2,…., n and `a_1 a_2` … `a_(n=1)` , then minimum value of `(1+a_1) (1+a_2)` ….. `(1+a_n)` is :

A

`2^(n//2)`

B

`2^n`

C

`2^(2n)`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3..... a_n in R^+ and a_1.a_2.a_3.........a_n = 1, then minimum value of (1+a_1 + a_1^2) (1 + a_2 + a_2^2)(1 + a_3 + a_3^2)........(1+ a_n + a_n^2) is equal to :-

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If |a_i| < 1,lamda_i geq0 for i=1,2,3,...,n and lambda_1+lamda_2+...lambda_n=1 then the value of |lambda_1 a_1+lambda_2 a_2+......+lambda_n a_n| is

Three distinct numbers a_1 , a_2, a_3 are in increasing G.P. a_1^2 + a_2^2 + a_3^2 = 364 and a_1 + a_2 + a_3 = 26 then the value of a_10 if a_n is the n^(th) term of the given G.P. is:

Statement-1 : If a_1,a_2,a_3 ,….. a_n are positive real numbers , whose product is a fixed number c, then the minimum value of a_1+a_2+…. + a_(n-1)+2a_n is n(2C)^(1/n) Statement-2 :A.M. ge G.M.