Home
Class 12
MATHS
If sum(r=1)^(n)r(r+1)(2r+3)=an^(4)+bn^(3...

If `sum_(r=1)^(n)r(r+1)(2r+3)=an^(4)+bn^(3)+cn^(2)+dn+e`, then.

A

a=1/2

B

b=8/3

C

c=9/2

D

e=0

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^( If )r(r+1)(2r+3)=an^(4)+bn^(3)+cn^(2)+dn+e then a-b=d-ce=0a,b-2/3,c-1 are in A.P.(b+d)/a is an integer

sum_(r=1)^(n)(3^(r)-r)=

If sum_(k=1)^(n) (sum_(m=1)^(k) m^(2))=an^(4)+bn^(3)+cn^(2)+dn+e , then

If sum_(s=1)^(n){sum_(r=1)^(s)r}=an^(3)+bn^(2)+Cn then

If S_(n)=sum_(r=1)^(n)(2r+1)/(r^(4)+2r^(3)+r^(2)), then S_(10) is equal to

If sum_(r=1)^(n)r(r+1)+sum_(r=1)^(n)(r+1)(r+2)=(n(an^(2)+bn+c))/(3),(a,b,cinN) then

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26) , then n equal to

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26), then n is equal to

Evaluate : sum_(r=1)^n (r+1)(r+3)