Home
Class 12
MATHS
Let a1,a2,a3 …. an be in A.P. If 1/(a1...

Let `a_1,a_2,a_3` …. `a_n` be in A.P. If `1/(a_1a_n)+1/(a_2a_(n-1))`+… + `1/(a_n a_1) = k/(a_1 + a_n) (1/a_1 + 1/a_2 + …. 1/a_n)` , then k is equal to :

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,.....,a_n are in AP, prove that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n) .

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

If the nonzero numbers a_1,a_2,a_3,....,a_n are in AP, prove that 1/(a_1a_2a_3)+1/(a_2a_3a_4)+...+1/(a_(n-2)a_(n-1)a_n)=1/(2(a_2-a_1))(1/(a_1a_2)-1/(a_(n-1)a_n)) .

Let {a_n} be a GP such that a_4/a_6 =1 /4 and a_2 + a_5 = 216 . Then a_1 is equal to

If a_1,a_2,a_3….a_(2n+1) are in A.P then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_2n-a_2)/(a_(2n)+a_2)+....+(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to

Let a_1,a_2,a_3…… ,a_n be in G.P such that 3a_1+7a_2 +3a_3-4a_5=0 Then common ratio of G.P can be

If a_1,a_2,….a_n are in H.P then (a_1)/(a_2+,a_3,…,a_n),(a_2)/(a_1+a_3+….+a_n),…,(a_n)/(a_1+a_2+….+a_(n-1)) are in

If a_1,a_2,……….a_n are in H.P, then the expression a_1a_2+a_2a_3+…+a_(n-1)a_n is equal to (A) n(a_1-a_n) (B) (n-1)(a_1-a_n) (C) na_1a_n (D) (n-1)a_1a_n