Home
Class 12
MATHS
If x1, x2, x3,...... x 2n are in A.P, ...

If `x_1, x_2, x_3,...... x 2_n` are in `A.P`, then `sum _(r=1)^(2n) (-1)^(r+1) x_r^2` is equal to

A

`n/(n-1)(x_1^2 -x_(2n)^2)`

B

`(2n)/(2n-1)(x_1^2-x_(2n)^2)`

C

`n/((2n-1))(x_1^2 -x_(2n)^2)`

D

`n/(n+1)(x_1^2 -x_(2n)^2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x_(1),x_(2),x_(3),......x2_(n) are in A.P, then sum_(r=1)^(2n)(-1)^(r+1)x_(r)^(2) is equal to

Q.if x_(1),x_(2)......x_(n) are in H.P. then sum_(r=1)^(n)x_(r)x_(r+1) is equal to :(A)(n-1)x_(1)x_(n)(B)nx_(1)x_(n)(C)(n+1)x_(1)x_(n)(D)(n+2)x_(1)x_(n)

lim_(x to oo ) tan { sum_(r=1)^(n) tan^(-1) ((1)/( 1 +r +r^2))} is equal to ________.

Let f (x ) = | 3 - | 2- | x- 1 |||, AA x in R be not differentiable at x _ 1 , x _ 2 , x _ 3, ….x_ n , then sum _ (i= 1 ) ^( n ) x _ i^2 equal to :

If x^(2)-x+1=0, then the value of sum_(r=1)^(2010)(x^(r)-(1)/(x^(r)))^(3) is equal to

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2r)/(x-2) is equal to

(1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(n) x^(n) , show that sum_(r=0)^(n) C_(r)^(3) is equal to the coefficient of x^(n) y^(n) in the expansion of {(1+ x)(1 + y) (x + y)}^(n) .