Home
Class 12
MATHS
Let S(k)=underset(ntooo)limunderset(i=0)...

Let `S_(k)=underset(ntooo)limunderset(i=0)overset(n)sum(1)/((k+1)^(i))." Then "underset(k=1)overset(n)sumkS_(k)` equals

A

`(n(n+1))/2`

B

`(n(n-1))/2`

C

`(n(n+2))/2`

D

`(n(n+3))/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If underset(i=1)overset(n)sum cos^(-1) alpha_(i)=0," then "underset(i=1)overset(n)sum alpha_(i)=

If k=underset(r=0)overset(n)(sum)(1)/(.^(n)C_(r)) , then underset(r=0)overset(n)(sum)(r)/(.^(n)C_(r)) is equal to

Let S_(k)=lim_(n rarr oo)sum_(i=0)^(n)(1)/((1+k)^(i)). Then sum_(k=1)^(n)kS_(k) equals:

Let S_(k)=lim_(n to oo) sum_(i=0)^(n) (1)/((k+1)^(i))." Then " sum_(k=1)^(n) kS_(k) equals

The value of cot[underset(n=1)overset(100)Sigmacot^(-1)(1+underset(k=1)overset(n)Sigma2k)] is

If f(x) = (a^(x))/(a^(x) + sqrt(a)), a gt 0 prove that (i) f(x) + f(1-x) = 1 (ii) underset(k=1)overset(2n-1)sum 2f ((k)/(2n)) = 2n-1 (iii) underset(k=1)overset(2n)sum 2f((k)/(2n+1)) = 2n