Home
Class 12
MATHS
Value of L = lim(n->oo) 1/n^4 [1 sum(k=1...

Value of L = `lim_(n->oo) 1/n^4 [1 sum_(k=1)^n k + 2sum_(k=1)^(n-1) k + 3 sum_(k=1)^(n-2) k +.....+n.1]` is

A

`1//24`

B

`1//12`

C

`1//6`

D

`1//3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k=1)^n k^3=

Value of L = lim_ (n rarr oo) (1) / (n ^ (4)) [1sum_ (k = 1) ^ (n) k + 2sum_ (k = 1) ^ (n-1) k + 3sum_ ( k = 1) ^ (n-2) k + ...... + n.1] is

L = lim_ (n rarr oo) (1) / (n ^ (4)) [1.sum_ (k = 1) ^ (n) k + 2 * sum_ (k = 1) ^ (n-1) k + 3 * sum_ (k = 1) ^ (n-2) k + ......... + n.1]

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

sum_ (k = 1) ^ (n) (2 ^ (k) + 3 ^ (k-1))

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

If sum_(k=1)^(n)k=45, find the value of sum_(k=1)^(n)k^(3).

lim_ (n rarr oo) [1 + sum_ (k = 1) ^ (n) (3) / (nCk)] ^ (n)

The value of sum_(r=1)^(n+1)(sum_(k=1)^(n)C(k,r-1))=

If sum_(k=1)^(n)k=210, find the value of sum_(k=1)^(n)k^(2).