Home
Class 12
MATHS
sum(n=1)^(99) n! (n^2 + n+1) is equal ...

`sum_(n=1)^(99) n! (n^2 + n+1) ` is equal to :

A

(100)!99-1

B

(100)(100)!-1

C

`100^100-1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to ___.

sum_(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

The value of sum_(n=1)^(oo)(1)/(2n(2n+1)) is equal to

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

If [x] be the greatest integer less than or equal to x then sum_(n=8)^(100) [ ((-1)^n n)/(2)] is equal to :

a_ (n) = int_ (0) ^ ((pi) / (2)) (1-sin t) ^ (n) sin2tdt ten lim_ (n rarr oo) sum_ (n = 1) ^ (n) (a_ ( n)) / (n) is equal to

The sum sum_(n=1)^(oo)((n)/(n^(4)+4)) is equal to

sum_(n=1)^7(n(n+1)(2n+1))/4 is equal to

sum_(r=1)^n r (n-r +1) is equal to :

sum_(n=1)^(oo)(n^(2))/(n!) is equal to