Home
Class 12
MATHS
If alpha in (0,pi/2),t h e nsqrt(x^2+x)+...

If `alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x))` is always greater than or equal to `2tanalpha` `1` `2` `sec^2alpha`

A

`2 tan alpha`

B

1

C

2

D

`sec^2 alpha`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha in(0,(pi)/(2)) then sqrt(x^(2)+x)+((tan alpha)^(2))/(sqrt(x^(2)+x)) is always greater than or equal to

If alpha in(0,(pi)/(2)), then sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2)+x)) is always greater than or equal to (a)2tan alpha(b)1 (c) 2(d)sec2 alpha

Let a in (0,(pi)/(2)) and f(x)=sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2)+x)), x gt 0 . If the least value of f(x) is 2sqrt3 , then alpha is equal to

If alpha is an acute angle and sin((alpha)/(2))=sqrt((x-1)/(2x)) then tan alpha is

int_(0)^(pi//2) ((nsqrt(sec x))/(nsqrt(sec x)+nsqrt(cosecx)))dx is equal to

If 0

Let alpha in (0, pi//2) be fixed. If the integral int("tan x" + "tan" alpha)/("tan x" - "tan" alpha)dx = A(x)"cos 2 alpha+B(x) "sin" 2 alpha +C ,where C is a constant of integration, then the functions A(x) and B(x) are respectively.

The value of alpha in [0,2pi] so that x^(2)+y^(2)+2sqrt(sin alpha )x+(cos alpha-1)=0 having intercept on x-axis always greater than 2, is/are

If tan alpha =2 and 0 lt alpha lt (pi)/(2) then prove that x =a, pi +alpha are the solution of the equation (tan(2alpha-x))/(tan (2alpha+x))=11 that lies between 0 and 2pi