Home
Class 12
MATHS
If ""^(n)C(12)=""^(n)C(8), then n is equ...

If `""^(n)C_(12)=""^(n)C_(8),` then n is equal to

A

20

B

12

C

6

D

30

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \binom{n}{12} = \binom{n}{8} \), we can use the property of combinations that states: \[ \binom{n}{r} = \binom{n}{n-r} \] ### Step-by-Step Solution: 1. **Apply the Property of Combinations:** We know that \( \binom{n}{r} = \binom{n}{n-r} \). In this case, we can set \( r = 12 \) and \( n - r = 8 \). 2. **Set Up the Equation:** From the property, we have: \[ \binom{n}{12} = \binom{n}{8} \] This implies: \[ n - 12 = 8 \] 3. **Solve for \( n \):** Rearranging the equation gives: \[ n = 12 + 8 \] Therefore, \[ n = 20 \] 4. **Verification:** To verify, we can check if \( \binom{20}{12} \) is indeed equal to \( \binom{20}{8} \): \[ \binom{20}{12} = \binom{20}{20-12} = \binom{20}{8} \] This confirms that our solution is correct. ### Final Answer: Thus, the value of \( n \) is \( 20 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n)C_(12)=.^(n)C_(8) then find the value of .^(22)C_(n) .

(i) If ""^(n)C_(8)= ""^(n)C_(2) , find ""^(n)C_(2) . (ii) If ""^(n)C_(10)= ""^(n)C_(12) , determine n and hence ""^(n)C_(5) . (iii) If ""^(n)C_(9)= ""^(n)C_(8) , find ""^(n)C_(17) .

If ""^(n)C_(8)= ""^(n)C_(9) , find the value of n.

Let n in N and [x] denote the greatest integer less than or equal to x. If the sum of (n + 1) terms ""^(n) C_(0) , 3 .""^(n)C_(1) , 5. :""^(n) C_(2) , & .""^(n)C_(3) is equal to 2 ^(100) . 101 then 2 [(n-1)/(2)] is equal to _________

If for some m,n,^(6)C_(m)+2(""^(6)C_(m+1))+^(6)C_(m+2)>^(8)C_(3) and ^(n-1)P_(3):^(n)P_(4)=1:8 ,then ""^(n)P_(m+1)+""^(n+1)C_(m) is equal to