Home
Class 12
MATHS
If (1)/(""^(4)C(n))=(1)/(""^(5)C(n))+(1)...

If `(1)/(""^(4)C_(n))=(1)/(""^(5)C_(n))+(1)/(""^(6)C_(n))`, then value of n is:

A

3

B

4

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{1}{\binom{4}{n}} = \frac{1}{\binom{5}{n}} + \frac{1}{\binom{6}{n}}\), we will follow these steps: ### Step 1: Rewrite the Binomial Coefficients We start by rewriting the binomial coefficients in terms of factorials: \[ \binom{4}{n} = \frac{4!}{n!(4-n)!}, \quad \binom{5}{n} = \frac{5!}{n!(5-n)!}, \quad \binom{6}{n} = \frac{6!}{n!(6-n)!} \] ### Step 2: Substitute into the Equation Substituting these into the equation gives us: \[ \frac{1}{\frac{4!}{n!(4-n)!}} = \frac{1}{\frac{5!}{n!(5-n)!}} + \frac{1}{\frac{6!}{n!(6-n)!}} \] This simplifies to: \[ \frac{n!(4-n)!}{4!} = \frac{n!(5-n)!}{5!} + \frac{n!(6-n)!}{6!} \] ### Step 3: Simplify the Equation Cancelling \(n!\) from both sides (assuming \(n! \neq 0\)) gives: \[ \frac{(4-n)!}{4!} = \frac{(5-n)!}{5!} + \frac{(6-n)!}{6!} \] ### Step 4: Express Factorials Now we can express the factorials: \[ \frac{(4-n)!}{4!} = \frac{(5-n)(4-n)!}{5 \cdot 4!} + \frac{(6-n)(5-n)(4-n)!}{6 \cdot 5 \cdot 4!} \] ### Step 5: Multiply Through by \(4! \cdot 30\) To eliminate the denominators, multiply through by \(30\): \[ 30(4-n)! = 6(5-n)(4-n)! + 5(6-n)(5-n)(4-n)! \] ### Step 6: Cancel \((4-n)!\) Assuming \(4-n \neq 0\) (which implies \(n \neq 4\)), we can cancel \((4-n)!\): \[ 30 = 6(5-n) + 5(6-n)(5-n) \] ### Step 7: Expand and Rearrange Expanding gives: \[ 30 = 30 - 6n + 5(30 - 11n + n^2) \] This simplifies to: \[ 30 = 30 - 6n + 150 - 55n + 5n^2 \] Combining like terms yields: \[ 0 = 5n^2 - 61n + 150 \] ### Step 8: Solve the Quadratic Equation Using the quadratic formula \(n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ n = \frac{61 \pm \sqrt{61^2 - 4 \cdot 5 \cdot 150}}{2 \cdot 5} \] Calculating the discriminant: \[ 61^2 - 3000 = 3721 - 3000 = 721 \] Thus: \[ n = \frac{61 \pm 27}{10} \] Calculating the two possible values: 1. \(n = \frac{88}{10} = 8.8\) (not valid since \(n\) must be an integer) 2. \(n = \frac{34}{10} = 3.4\) (not valid since \(n\) must be an integer) ### Step 9: Check Integer Values Since \(n\) must be less than 4, we check \(n = 2\) and \(n = 3\): - For \(n = 2\): \[ \frac{1}{\binom{4}{2}} = \frac{1}{6}, \quad \frac{1}{\binom{5}{2}} + \frac{1}{\binom{6}{2}} = \frac{1}{10} + \frac{1}{15} = \frac{3 + 2}{30} = \frac{5}{30} = \frac{1}{6} \] This holds true. - For \(n = 3\): \[ \frac{1}{\binom{4}{3}} = 1, \quad \frac{1}{\binom{5}{3}} + \frac{1}{\binom{6}{3}} = \frac{1}{10} + \frac{1}{20} = \frac{2 + 1}{20} = \frac{3}{20} \neq 1 \] Thus, the only valid solution is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(20)C_(n+1)=.^(n)C_(16) , the value of n is

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

If .^(n)C_(4),.^(n)C_(5), .^(n)C_(6) are in A.P., then find the value of n.