Home
Class 12
MATHS
If cot(A/2)=(b+c)/a then Delta ABC is...

If `cot(A/2)=(b+c)/a` then `Delta ABC` is

A

isosceles

B

equilateral

C

right angled

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, if (cot A)/(2)=(b+c)/(a), then triangle ABC must be

In Delta ABC, if (b-c)/(b+c)cot((A)/(2))+(b+c)/(b-c)tan((A)/(2))=2, then Delta ABC is (A) Right angled (B) Acute angled (C) Equilateral (D) Obtuse angled

In Delta ABC If cot A+cot B+cot C=sqrt(3) then Delta ABC is

In Delta ABC if cot A+cot B+cot C=sqrt(3) then Delta ABC is

If A,B ,C are the angle of Delta ABC then cot A .cot B + cot B . "" cot C + cot C.cot A =

In triangle ABC, if cot A*cot C=(1)/(2)andcot B*cot C=(1)/(18) then the value of tan C is

If A,B,C are the angles of a Delta ABC , prove that tan ((C+A)/(2))=cot (B)/(2) .

A and B are fixed points such that AB=2a .The vertex C of Delta ABC such that cot A+cot B= constant.Then locus of C is

In Delta ABC, if cos A+2cos B+cos C=2 and cot((A)/(2))+cot((C)/(2))=lambda cot((B)/(2)) ,then find the value of lambda

In ABC,(cot A)/(2)+(cot B)/(2)+(cot C)/(2) is equal to (Delta)/(r^(2))(b)((a+b+c)^(2))/(abc)2R(c)(Delta)/(r)(d)(Delta)/(Rr)