Home
Class 12
MATHS
If a triangle ABC, sin A = sin^(2) B and...

If a triangle ABC, `sin A = sin^(2) B` and `2 cos^(2)A = 3 cos^(2)B`, then the `Delta ABC` is :

A

right angled

B

obtuse angled

C

Isosceles

D

equilateral

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA=sin^2B and 2cos^2A=3cos^2B then the triangle ABC is

If cos A = (sin B)/(2 sin C) , then Delta ABC is

In a triangle ABC,sin A-cos B=cos C then angle B is

Statement-1: In a triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 2 , then one of the angles must be 90 °. Statement-2: In any triangle ABC cos 2A + cos 2B + cos 2C = -1 - 4 cos A cos B cos C

In triangle ABC ,if a sin A sin B+b cos^(2)A=sqrt(2)a ,then the value of ((b)/(a)) is

In Delta ABC, sum (sin (A + B) * sin (AB)) / (cos ^ (2) A cos ^ (2) B) =

Statement I If in a triangle ABC sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angle must be 90^(@). Statement II In any triangles ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C