Home
Class 12
MATHS
In a right angled !ABC sin^(2)A+sin^(2)B...

In a right angled `!ABC sin^(2)A+sin^(2)B+sin^(2)C`=

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

In any triangle ABC,sin^(2)A-sin^(2)B+sin^(2)C is always equal to (A) 2sin A sin B cos C(B)2sin A cos B sin C(C)2sin A cos B cos C(D)2sin A sin B sin C

In triangle ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

If in a triangle ABC,sin^(4)A+sin^(4)B+sin^(4)C=sin^(2)B sin^(2)C+2sin^(2)C sin^(2)A+2sin^(2)A sin^(2)B ,show that,one of the angles of the triangle is 30^(@) or 150^(@)

In a triange ABC, if sin(A/2) sin (B/2) sin(C/2) = 1/8 prove that the triangle is equilateral.

In Delta ABC , if sin^(2)A + sin^(2)B = sin^(2)C , then show that a^(2) + b^(2) = c^(2) .

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then