Home
Class 12
MATHS
If: cos A/2 = sqrt((b+c)/(2c)), then c^(...

If: `cos A/2 = sqrt((b+c)/(2c))`, then `c^(2)=`

A

`a^(2) + b^(2) = c^(2)`

B

`b^(2) + c^(2) = a^(2)`

C

`c^(2) + a^(2) = b^(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If Delta ABC,quad if (cos A)/(2)=sqrt((b+c)/(2c)), then

If cos(A)/(2)=sqrt((b+c)/(2c)), then prove that a^(2)+b^(2)=c^(2)

For any triangle ABC, If B=3C, show that cos C=sqrt((b+c)/(4c)) and (sin A)/(2)=(b-c)/(2c)

If a cos theta - b sin theta = c, prove that a sin theta + b cos theta = pm sqrt(a^(2) + b^(2) - c^(2)) .

If : a * cos A-b * sin A=c, "then" : a * sin A +b* cos A= A) sqrt(a^(2)+b^(2)-c^(2)) B) sqrt(a^(2)-b^(2)+c^(2)) C) sqrt(b^(2)+c^(2)-a^(2)) D) sqrt(b^(2)+c^(2)+a^(2))

If a cos theta - b sin theta =c , then prove that a sin theta + b cos theta = +- sqrt(a^(2) + b^(2) - c^(2))

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

Show that for all real theta , the expression a sin^(2)theta + b sin theta cos theta +c cos^(2)theta lies between 1/2(a+c) - 1/2 sqrt(b^(2) +(a-c)^(2)) and 1/2(a+c) + 1/2 sqrt(b^(2) +(a-c)^(2))

Distance of the points (a,b,c) for the y axis is (a) sqrt(b^(2)+c^(2)) (b) sqrt(c^(2)+a^(2)) (c )sqrt(a^(2)+b^(2)) (d) sqrt(a^(2)+b^(2)+c^(2))