Home
Class 12
MATHS
Prove that (1+cos(A-B)cosC)/(1+cos(A-C)c...

Prove that `(1+cos(A-B)cosC)/(1+cos(A-C)cosB)=(a^(2)+b^(2))/(a^(2)+c^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any Delta ABC, prove that :(1+cos(A-B)cos C)/(1+cos(A-C)cos B)=(a^(2)+b^(2))/(a^(2)+c^(2))

In any triangle ABC, prove that: (1+cos(A-B)cos C)/(1+cos(A-C)cos B)=(a^(2)+b^(2))/(a^(2)+c^(2))

(1+cos A*cos(B-C))/(1+cos C*cos(A-B))=(b^(2)+c^(2))/(a^(2)+b^(2))

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

In DeltaABC , prove that: b(cosA-cosC)=2(c-a)cos^(2)B/2

In any Delta ABC, prove that :a^(2)(cos^(2)B-cos^(2)C)+b^(2)(cos^(2)C-cos^(2)A)+c^(2)(cos^(2)A-cos^(2)B)=0

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

If A+B+C=2S, then prove that cos(S-A)+cos(S-B)+cos C=-1+4cos((S-A)/(2))cos((S-B)/(2))cos((C)/(2))

In /_ABC prove that (b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0