Home
Class 12
MATHS
If p(1), p(2) and p(3) and are respe...

If `p_(1), p_(2)` and `p_(3)` and are respectively the perpendiculars from the vertices of a triangle to the opposite sides, prove that : `(1)/(p_(1)) + (1)/(p_(2)) + (1)/(p_(3)) = (1)/(r )`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If p_(1), p_(2) and p_(3) and are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then (1)/(p_(1)) + (1)/(p_(2)) - (1)/(p_(3)) = .

If p_(1), p _(2), p_(3) are respectively the perpendicular from the vertices of a triangle to the opposite sides, then find the value of p_(1) p_(2)p _(3).

If p_(1), p_(2),p_(3) are respectively the perpendiculars from the vertices of a triangle to the opposite sides , then (cosA)/(p_(1))+(cosB)/(p_(2))+(cosC)/(p_(3)) is equal to

If p1,p2,p3 are respectively the perpendicular from the vertices of a triangle to the opposite sides,then find the value of p1p2p3

If p_(2),p_(2),p_(3) are the perpendiculars from the vertices of a triangle to the opposite sides, then prove that p_(1)p_(2)p_(3)=(a^(2)b^(2)c^(2))/(8R^(3))

If the lengths of the perpendiculars from the vertices of a triangle ABC on the opposite sides are p_(1), p_(2), p_(3) then prove that (1)/(p_(1)) + (1)/(p_(2)) + (1)/(p_(3)) = (1)/(r) = (1)/(r_(1)) + (1)/(r_(2)) + (1)/(r_(3)) .

If the length of the perpendicular from the vertices of a triangle A,B,C on the opposite sides are P_(1),P_(2),P_(3) then (1)/(P_(1))+(1)/(P_(2))+(1)/(P_(3))=

If p_(1),p_(2),p_(3) are the altitudes of a triangle from the vertieces A,B,C and Delta is the area of the triangle then prove that (1)/(p_(1))+(1)/(p_(2))-(1)/(p_(3))=(2ab)/((a+b+c)Delta)"cos"^(2)(C)/(2)

p_(1)p_(2)p_(3)=

If P_(1),P_(2) and P_(3) are the altitudes of a triangle from vertices A,B and C respectively and Delta is the area of the triangle,then the value of (1)/(P_(1))+(1)/(P_(2))-(1)/(P_(3))=