Home
Class 12
MATHS
If a cos A = b cos B, prove that the De...

If `a cos A = b cos B`, prove that the `Delta ABC` is either isosceles or right angled.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if a cos A=b cos B, show that the triangle is either isosceles or right angled.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

If : cos^(2) A + cos^(2) B + cos^(2) C = 1, "then" : Delta ABC is A)scalane B)equilateral C)isosceles D)right angled

112. If in a Delta ABC,cos A+cos B+cos c=(3)/(2). Prove that Delta ABC is an equilateral triangle.

If cos B=(sin A)/(2sin C) then prove that the triangle is isosceles.

In a o+ABC, if cos C=(sin A)/(2sin B), prove that the triangle is isosceles.

In triangle ABC , if cosA+sinA-(2)/(cosB+sinB)=0 then prove that triangle is isosceles right angled.

In Delta ABC , if (cos A)/(a) = (cos B)/(b) , then show that it is an isosceles triangle.

If in a Delta ABC, c(a+b) cos B//2 = b(a+c) cos C//2 , prove that the triangle is isosceles.

If cos^(2)A+cos^(2)B+cos^(2)C=1, then ABC is (a)equilateral (b) isosceles (c)right angles (d) none of these