Home
Class 12
MATHS
If in a Delta ABC, c(a+b) cos B//2 = b(a...

If in a `Delta ABC, c(a+b) cos B//2 = b(a+c) cos C//2`, prove that the triangle is isosceles.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If in Delta ABC, c(a+b) cos ""B/2=b (a+c) cos ""C/2, the triangle is

If cos B=(sin A)/(2sin C) then prove that the triangle is isosceles.

In a Delta ABC if (a+b)cos((B)/(2))=b(a+c)cos((C)/(2)) then prove that the triangle ABC is isosceles.

In a o+ABC, if cos C=(sin A)/(2sin B), prove that the triangle is isosceles.

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceless

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In a triangle ABC ,cos A + cos B + cos C = 3/2 , then the triangle ,is

In a triangle ABC, a cos A+b cos B+ c cos C=

In Delta ABC,(a)/(cos A)=(b)/(cos B)=(c)/(cos c); If b=2 'then the area of the triangle is