Home
Class 12
MATHS
Statement I If the sides of a triangle a...

Statement I If the sides of a triangle are 13, 14 15 then the radius of in circle =4
Statement II In `a DeltaABC, Delta = sqrt(s (s-a) (s-b) (s-c))`where `s=(a+b+c)/(2) and r =(Delta)/(s)`

A

If statement -1 is true, statement –II is true, statement –II is a correct explanation for statement-I

B

If statement –I is true, statement –II is true, statement –II is not a correct explanation for statement –I

C

If statement –I is true, statement –II is false

D

If statement –I is false, statement –II is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle a = 13 , b = 14, c = 15, r =

In Delta ABC, a^(2)(s-a)+b^(2)(s-b)+c^(2)(s-c)=

In DeltaABC,c^(2)=a^(2)+b^(2), then 4s (s -a) (s -b) (s -c) =

Using vectors: Prove that if a,b,care the lengths of three sides of a triangle then its area Delta is given by Delta=sqrt(s(s-a)(s-b)(s-c)) where 2s=a+b+c

Statement I: The sides of triangle are 20cm,21cm,29cm. Its area is 210cm^(2) Statement II : 2s=(a+b+c), where a,b,c are the sides of triangle,then area=sqrt(s(s-a)(s-b)(s-c))

If in a Delta ABC, prove that Delta<(s^(2))/(4)

In DeltaABC , Prove that (s-a) tan (A/2)=(s-b) tan (B/2)=(s-c) tan (C/2)

Statement I In a DeltaABC, sum (cos ^(2)""(A)/(2))/(a ) has the value equal to (s^(2))/(abc). Statement II in a Delta ABC, cos ""A/2=sqrt(((s-b)(s-c))/(bc)) cos ""(beta)/(2)=sqrt(((s-a) (s-c))/(ac)), cos ""c/2= sqrt(((s-a)(s-b))/(ab))

In DeltaABC,"if "2s=a+b+c , then the value of (s(s-a))/(bc)-((s-b)(s-c))/(bc) =