Home
Class 12
MATHS
If (a^(2) + b^(2))sin (A-B) = (a^(2)-b^(...

If `(a^(2) + b^(2))sin (A-B) = (a^(2)-b^(2)) sin(A+B)` then show that, the triangle is either isoscelels or right angled.

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In the triangle ABC, if (a^(2)+b^(2)) sin (A-B)=(a^(2) -b^(2)) sin (A+B), then the triangle is

In a triangle ABC, if a cos A=b cos B, show that the triangle is either isosceles or right angled.

In any triangle.i(a^(2)-b^(2))/(a^(2)+b^(2))=(sin(A-B))/(sin(A+B)), then prove that the triangle is either right angled or isosceles.

If in a hat harr ABC,(a^(2)-b^(2))/(a^(2)+b^(2))=(sin(A-B))/(sin(A+B)), prove that it is either a right angled or an isosceles triangle.

If in a DeltaABC, (a^(2)-b^(2))/(a ^(2)+b^(2))=(sin (A-B))/(sin (A+B)), then the triangle is

In a ABC,quad if sin^(2)A+sin^(2)B=sin^(2)C show that the triangle is right angled.

lf in DeltaABC,b^(2)sin 2C + c^(2) sin 2B = 2bc,then the triangle is

In a Delta ABC if a^(2)sin(B-C)+b^(2)sin(C-A)+c^(2)sin(A-B)=0, then triangle is

In Delta ABC,(b^(2)+c^(2))/(b^(2)-c^(2))=(sin(B+C))/(sin(B-C)) then the triangle is