Home
Class 12
MATHS
If a,b,c are in HP, then prove that sin ...

If a,b,c are in HP, then prove that `sin ^(2) ""(A)/(2), sin ^(2) ""(B)/(2), sin ^(2) ""(C )/(2)` are also in HP.

Promotional Banner

Similar Questions

Explore conceptually related problems

If sides a,b,c of the triangle ABC are in A.P,then prove that sin^(2)((A)/(2))cos ec2A;sin^(2)((B)/(2))cos ec2B;sin^(2)((c)/(2))cos ec2c are in H.P.

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

If a, b, c are in HP then prove that b^2(a-c)^2=2{c^2(b-a)^2+a^2(c-b)^2} .

is A+B+C=pi, prove that sin((A)/(2))sin((B)/(2))sin((C)/(2))>=-1

In any Delta ABC, prove that :2(a sin^(2)((C)/(2))+c sin^(2)((A)/(2)))=a+c-b

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If the sides a ,b ,c of a triangleABC are in HP, prove that sin^2A/2,sin^2B/2,sin^2C/2 are in HP

If A+B+C=pi , prove that: "sin" A+"sin" B-"sin" C=4 "sin"(A)/(2)"sin"(B)/(2)"cos"(C)/(2) .

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)