Home
Class 12
MATHS
In a triangle ABC, a ge b ge c. If (a^...

In a triangle `ABC, a ge b ge c.` If
`(a^(3)+b^(3)+c^(3))/(sin ^(3)A +sin ^(3) B+sin ^(3)C)=8,` then the maximum value of a `sin^(3) A+sin ^(3) B+ sin^(3)C`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

The largest side of a triangle ABC that can be inscribed in acrcle so that (a^(3)+b^(3)+c^(3))/(sin^(3)A+sin^(3)B+sin^(3)C)=64 is (where a,b,c are lengths of sides opposite to vertices A,B,C of the triangle ABC respectively)

If 0<=A,B,C<=pi and A+B+c=pi than the minimum value of sin3A+sin3B+sin3C is

If sin A+sin B + sin C =3, then the value of cos A + cos B + cos C is

In any triangle ABC, prove that: a^(3)sin(B-C)+b^(3)sin(C-A)+c^(3)sin(A-B)=0

a^(3)( sin^(3)B-sin^(3)C) + b^(3) (sin^(3)C-sin^(3)A) + c^(3)( sin^(3)A-sin^(3)B) = 0

In a triangle ABC, if a,b,c are in A.P and (b)/(c)sin2C+(c)/(b)sin2B+(b)/(a)sin2A+(a)/(b)sin2B=2 then the value of sin B equals

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B