Home
Class 12
MATHS
Given (b+c)/(11) = (c+a)/(12) = (a+b)/(...

Given `(b+c)/(11) = (c+a)/(12) = (a+b)/(13)` for a `Delta ABC` with usual notation. If `(cos A)/(alpha) = (cos B)/(beta) = (cos C)/(gamma)`, then the ordered triad `(alpha, beta, gamma)` has a value:

A

(3, 4, 5)

B

(5, 12, 13)

C

(7, 19, 25)

D

(19, 7, 25)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations and proceed step by step. ### Step 1: Set up the equations We are given the equations: \[ \frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} \] Let this common value be \( k \). Therefore, we can write: \[ b+c = 11k \quad (1) \] \[ c+a = 12k \quad (2) \] \[ a+b = 13k \quad (3) \] ### Step 2: Add the equations Now, we add equations (1), (2), and (3): \[ (b+c) + (c+a) + (a+b) = 11k + 12k + 13k \] This simplifies to: \[ 2a + 2b + 2c = 36k \] Dividing by 2 gives: \[ a + b + c = 18k \quad (4) \] ### Step 3: Express \( a, b, c \) in terms of \( k \) Now, we can express \( a, b, c \) using equations (1), (2), and (3): From (1): \[ b+c = 11k \implies a = (a+b+c) - (b+c) = 18k - 11k = 7k \] From (2): \[ c+a = 12k \implies b = (a+b+c) - (c+a) = 18k - 12k = 6k \] From (3): \[ a+b = 13k \implies c = (a+b+c) - (a+b) = 18k - 13k = 5k \] Thus, we have: \[ a = 7k, \quad b = 6k, \quad c = 5k \] ### Step 4: Calculate \( s \) Next, we calculate the semi-perimeter \( s \): \[ s = \frac{a+b+c}{2} = \frac{18k}{2} = 9k \] ### Step 5: Calculate \( \frac{10a}{2} \), \( \frac{10b}{2} \), and \( \frac{10c}{2} \) Now we find: \[ \frac{10a}{2} = 5a = 5(7k) = 35k \] \[ \frac{10b}{2} = 5b = 5(6k) = 30k \] \[ \frac{10c}{2} = 5c = 5(5k) = 25k \] ### Step 6: Use the formula for cosines Using the formula for cosines in terms of the sides and semi-perimeter: \[ \cos A = \frac{s-b}{s} = \frac{9k - 6k}{9k} = \frac{3k}{9k} = \frac{1}{3} \] \[ \cos B = \frac{s-c}{s} = \frac{9k - 5k}{9k} = \frac{4k}{9k} = \frac{4}{9} \] \[ \cos C = \frac{s-a}{s} = \frac{9k - 7k}{9k} = \frac{2k}{9k} = \frac{2}{9} \] ### Step 7: Set up the ratios We have: \[ \frac{\cos A}{\alpha} = \frac{\cos B}{\beta} = \frac{\cos C}{\gamma} \] Let this common ratio be \( m \): \[ \alpha = \frac{\cos A}{m}, \quad \beta = \frac{\cos B}{m}, \quad \gamma = \frac{\cos C}{m} \] ### Step 8: Find the ordered triad From the values of cosines: \[ \alpha = \frac{1/3}{m}, \quad \beta = \frac{4/9}{m}, \quad \gamma = \frac{2/9}{m} \] To find the ordered triad \( (\alpha, \beta, \gamma) \), we can express them in terms of a common denominator: \[ \alpha : \beta : \gamma = 1/3 : 4/9 : 2/9 \] Multiplying through by 9 gives: \[ \alpha : \beta : \gamma = 3 : 4 : 2 \] ### Final Answer Thus, the ordered triad \( (\alpha, \beta, \gamma) \) is: \[ (17, 19, 25) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Given (b+c)/(11)=(c+a)/(12)=(a+b)/(13) for a DeltaABC with usual notation. If (cos A)/(alpha)=(cos B)/(beta)=(cos C)/(gamma) then the ordered traiad, (alpha,beta,gamma) has a vlaue

In a Delta ABC with usual notations, if (a)/(cos A)=(b)/(cos B)=(c )/(cos C) , then the triangle is :

If cos alpha+cos beta+cos gamma=0; then prove that cos3 alpha+cos3 beta+cos3 gamma=12cos alpha cos beta cos gamma

If cos alpha+cos beta+cos gamma=0, then prove that cos3 alpha+cos3 beta+cos3 gamma=12cos alpha cos beta cos gamma

If alpha,beta,gamma are the lengths of the altitudes of Delta ABC, then (cos A)/(alpha)+(cos B)/(beta)+(cos C)/(gamma)=

Let cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2 , then the value of cos alpha + cos beta + cos gamma is

If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

With usual notatins, if in a Delta ABC,(b+c)/(11)=(c+a)/(12) =(a+b)/(13), then prove that (cos A)/(7) =(cos B)/(19) =(cos C)/(25).

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is

If cos(alpha+beta)sin(gamma +delta) = cos(alpha-beta)sin(gamma-delta) , then the value of cotalpha*cotbeta.cotgamma is :