Home
Class 12
MATHS
An ellipse is drawn by taking a diameter...

An ellipse is drawn by taking a diameter of the circle `(x – 1)^2 + y^2 = 1`, as its semi-minor axis and a diameter of the circle `x^2 + (y – 2)^2 = 4` as its semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is:

A

`4x^2 + y^2 =8`

B

`x^2 +4y^2 =16`

C

`4x^2 +y^2 =4`

D

`x^2 +4y^2 =8`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    MOTION|Exercise Exercise - 3 | Subjective | JEE Advanced|21 Videos
  • DIFFERENTIAL EQUATION

    MOTION|Exercise Exercise 4|29 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos

Similar Questions

Explore conceptually related problems

An ellipse is drawn by taking a diameter of the circle (x""""1)^2+""y^2=""1 as its semiminor axis and a diameter of the circle x^2+""(y""""2)^2=""4 as its semi-major axis. If the centre of the ellipse is the origin and its axes are the coordinate axes, then the equation of the ellipse is (1) 4x^2+""y^2=""4 (2) x^2+""4y^2=""8 (3) 4x^2+""y^2=""8 (4) x^2+""4y^2=""16

An ellipse with major axis 4 and minor axis 2 touches both the coordinate axes,then locus of its focus is

The eccentricity of an ellipse with centre at the orgin and axes along the coordinate axes , is 1/2 if one of the directrices is x=4, the equation of the ellipse is

The equation of the ellipse with its axes as the coordinate axes respectively and whose major axis =6 and minor axis =4 is

The eccentricity of an ellipse with its centre at the origin is (1)/(2) . If one of the directrices is x = 4 , then the equation of ellipse is

MOTION-ELLIPSE -Exercise - 4 | Level-I Previous Year | JEE Main
  1. In an ellipse, the distances between its foci is 6 and minor axis is 8...

    Text Solution

    |

  2. A focus of an ellipse is at the origin. The directrix is the line x...

    Text Solution

    |

  3. Statement 1: An equation of a common tangent to the parabola y^2=16...

    Text Solution

    |

  4. An ellipse is drawn by taking a diameter of the circle (x – 1)^2 + y^2...

    Text Solution

    |

  5. The equation of the circle passing through the foci of the ellipse ...

    Text Solution

    |

  6. The locus of the foot of perpendicular drawn from the centre of the...

    Text Solution

    |

  7. The area (in sq. units) of the quadrilateral formed by the tangents...

    Text Solution

    |

  8. If the curves y^2=6x, 9x^2+by^2=16 intersect each other at right angle...

    Text Solution

    |

  9. Let P(x1, y1) and Q(x2, y2), y1 < 0, y2 < 0, be the end points of the...

    Text Solution

    |

  10. The line passing through the extremity A of the major axis and extremi...

    Text Solution

    |

  11. The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at...

    Text Solution

    |

  12. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  13. Tangents are drawn from the point P(3, 4) to the ellipse x^2/9 +y^2/4 ...

    Text Solution

    |

  14. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  15. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |

  16. Let E1 and E2, be two ellipses whose centers are at the origin.The maj...

    Text Solution

    |

  17. Suppose that the foci of the ellipse (x^2)/9+(y^2)/5=1 are (f1,0)a n d...

    Text Solution

    |

  18. Let F1(x1, 0) and F2(x2, 0), for x1 lt 0 and x2 gt 0, be the foci of t...

    Text Solution

    |

  19. If the tangents to the ellipse at M and N meet at R and the normal to ...

    Text Solution

    |

  20. Consider two straight lines, each of which is tangent to both the c...

    Text Solution

    |