Home
Class 12
MATHS
Let P(x1, y1) and Q(x2, y2), y1 < 0, y2...

Let `P(x_1, y_1) and Q(x_2, y_2), y_1 < 0, y_2 < 0`, be the end points of the latus rectum of the ellipse `x^2+4y^2 = 4`. The equations of parabolas with latus rectum PQ are

A

`x^2 +2sqrt3y = 3 +sqrt3`

B

`x^2 -2sqrt3y = 3 +sqrt3`

C

`x^2 +2sqrt3y = 3 -sqrt3`

D

`x^2 -2sqrt3y = 3 -sqrt3`

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    MOTION|Exercise Exercise - 3 | Subjective | JEE Advanced|21 Videos
  • DIFFERENTIAL EQUATION

    MOTION|Exercise Exercise 4|29 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos

Similar Questions

Explore conceptually related problems

Find the distance between points P(x_1, y_1) and Q(x_2, y_2) : PQ is parallel to y-axis

Find the distance between points P(x_1, y_1) and Q(x_2, y_2) : PQ is parallel to x-axis

Let PQ be a line segment with P(x_1, y_1, z_1) and Q(x_2, y_2, z_2) and let L. be a straight line whose d.c.'s are l, m, n. Then the length of projection of PQ on the line L is

The ratio in which the line segment joining P(x_1, y_1) and Q(x_2, y_2) is divided by x-axis is y_1: y_2 (b) y_1: y_2 (c) x_1: x_2 (d) x_1: x_2

For points P = (x_1, y_1) and Q = (x_2,y_2) of the coordinate plane, a new distance d (P, Q) is defined by d(P,Q)=|x_1-x_2|+|y_1-y_2|. Let O (0, 0) and A = (3, 2) . Prove that the set of points in the first quadrant which are equidistant (wrt new distance) from O and A consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.

For points P-=(x_1,y_1) and Q-=(x_2,y_2) of the coordinates plane, a new distance d (P,Q) is defined by d(P,Q) =|x_1-x_2|+|y_1-y_2| . Let O-=(0,0) and A-=(3,2) . Consider the set of points P in the first quadrant which are equidistant (with respect to the new distance) from O and A. The area of the ragion bounded by the locus of P and the line y=4 in the first quadrant is

For points P-=(x_1,y_1) and Q-=(x_2,y_2) of the coordinates plane, a new distance d (P,Q) is defined by d(P,Q) =|x_1-x_2|+|y_1-y_2| . Let O-=(0,0) and A-=(3,2) . Consider the set of points P in the first quadrant which are equidistant (with respect to the new distance) from O and A. The set of poitns P consists of

If the line segment joining the points P(x_1, y_1)a n d Q(x_2, y_2) subtends an angle alpha at the origin O, prove that : O PdotO Q cosalpha=x_1x_2+y_1y_2dot

MOTION-ELLIPSE -Exercise - 4 | Level-I Previous Year | JEE Main
  1. In an ellipse, the distances between its foci is 6 and minor axis is 8...

    Text Solution

    |

  2. A focus of an ellipse is at the origin. The directrix is the line x...

    Text Solution

    |

  3. Statement 1: An equation of a common tangent to the parabola y^2=16...

    Text Solution

    |

  4. An ellipse is drawn by taking a diameter of the circle (x – 1)^2 + y^2...

    Text Solution

    |

  5. The equation of the circle passing through the foci of the ellipse ...

    Text Solution

    |

  6. The locus of the foot of perpendicular drawn from the centre of the...

    Text Solution

    |

  7. The area (in sq. units) of the quadrilateral formed by the tangents...

    Text Solution

    |

  8. If the curves y^2=6x, 9x^2+by^2=16 intersect each other at right angle...

    Text Solution

    |

  9. Let P(x1, y1) and Q(x2, y2), y1 < 0, y2 < 0, be the end points of the...

    Text Solution

    |

  10. The line passing through the extremity A of the major axis and extremi...

    Text Solution

    |

  11. The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at...

    Text Solution

    |

  12. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  13. Tangents are drawn from the point P(3, 4) to the ellipse x^2/9 +y^2/4 ...

    Text Solution

    |

  14. Tangents are drawn from the point P(3,4) to the ellipse x^(2)/9+y^(2)/...

    Text Solution

    |

  15. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |

  16. Let E1 and E2, be two ellipses whose centers are at the origin.The maj...

    Text Solution

    |

  17. Suppose that the foci of the ellipse (x^2)/9+(y^2)/5=1 are (f1,0)a n d...

    Text Solution

    |

  18. Let F1(x1, 0) and F2(x2, 0), for x1 lt 0 and x2 gt 0, be the foci of t...

    Text Solution

    |

  19. If the tangents to the ellipse at M and N meet at R and the normal to ...

    Text Solution

    |

  20. Consider two straight lines, each of which is tangent to both the c...

    Text Solution

    |