Home
Class 12
MATHS
A circle of variable radius cuts the rec...

A circle of variable radius cuts the rectangular hyperbola `x^(2)-y^(2)=9a^(2)` in points P, Q, R and S. Determine the equa- tion of the locus of the centroid of triangle PQR.

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    MOTION|Exercise EXERCISE-1 (SECTION - A)|18 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-2 (Level-I)|17 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos

Similar Questions

Explore conceptually related problems

A circle with centre (3alpha, 3beta) and of variable radius cuts the rectangular hyperbola x^(2)-y^(2)=9a^(2) at the points P, Q, S, R . Prove that the locus of the centroid of triangle PQR is (x-2alpha)^(2)-(y-2beta)^(2)=a^(2) .

A circle with centre (3a,3b) and with variable radius cuts the hyperbola x^(2)-y^(2)=36 at the points A,B,C and D . If the locus of the centroid of Delta ABC is (x-k_(1)a)^(2)-(y-k_(2)b)^(2)=k_(3) . then value of k_1, k_2 and k_3

If P is a point on the rectangular hyperbola x^(2)-y^(2)=a^(2),C is its centre and S,S ,are the two foci,then the product (SP.S'P)=

If P is a point on the rectangular hyperbola x^(2)-y^(2)=a^(2),C is its centre and S,S ,are the two foci,then the product (SP.S'P)=

From a variable point R on the line y = 2x + 3 tangents are drawn to the parabola y^(2)=4ax touch it at P and Q point. Find the locus of the centroid of the triangle PQR.

If the normal to the rectangular hyperbola x^(2) - y^(2) = 4 at a point P meets the coordinates axes in Q and R and O is the centre of the hyperbola , then

The normal at three points P, Q, R on a rectangular hyperbola intersect at a point T on the curve. Prove that the centre of the hyperbola is the centroid of the triangle PQR.

Normals at points P, Q and R of the parabola y^(2)=4ax meet in a point. Find the equation of line on which centroid of the triangle PQR lies.

Find the locus of the middle points of the normals chords of the rectangular hyperbola x^(2)-y^(2)=a^(2)

MOTION-HYPERBOLA-EXERCISE-4 (Level-II)
  1. A circle of variable radius cuts the rectangular hyperbola x^(2)-y^(2)...

    Text Solution

    |

  2. If a hyperbola passes through the focus of the ellipse x^(2)/25+y^(2)/...

    Text Solution

    |

  3. Let ABCD be a square of side length 2 units. C2 is the circle through ...

    Text Solution

    |

  4. Let ABCD be a square of side length 2 units. C(2) is the fircle throug...

    Text Solution

    |

  5. Let ABCD be a square of side length 2 units. C(2) is the circle throug...

    Text Solution

    |

  6. A hyperbola, having the transverse axis of length 2 sin theta, is conf...

    Text Solution

    |

  7. Match the statements in Column I with the properties in Column II. A

    Text Solution

    |

  8. Let 'a' and 'b' be non-zero real numbers. Then, the equation (ax^2+ by...

    Text Solution

    |

  9. Consider a branch of the hypebola x^2-2y^2-2sqrt2x-4sqrt2y-6=0 with ve...

    Text Solution

    |

  10. Match the conics in column I with statements/ex- pressions in Column I...

    Text Solution

    |

  11. An ellipse intersects the hyperbola 2x^(2)-2y^(2)=1 orthogonally. The ...

    Text Solution

    |

  12. The circle x^(2)+y^(2)-8x=0 and hyperbola (x^(2))/(9)-(y^(2))/(4)=1 in...

    Text Solution

    |

  13. The circle x^2+y^2-8x=0 and hyperbola x^2/9-y^2/4=1 intersect at the...

    Text Solution

    |

  14. The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1. I...

    Text Solution

    |

  15. Let the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=...

    Text Solution

    |

  16. Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1If t...

    Text Solution

    |

  17. Consider the hyperbola H:x^2-y^2=1 and a circle S with centre N(x2,0) ...

    Text Solution

    |

  18. Let H :(x^2)/(a^2)-(y^2)/(b^2)=1 , where a > b >0 , be a hyperbola in ...

    Text Solution

    |