Home
Class 12
MATHS
Equation (2 + lambda)x^2-2 lambdaxy+(lam...

Equation `(2 + lambda)x^2-2 lambdaxy+(lambda -1)y^2-4x-2=0` represents a hyperbola if

A

`lambda=4`

B

`lambda=1`

C

`lambda=4//3`

D

`lambda=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \(\lambda\) for which the equation \[ (2 + \lambda)x^2 - 2\lambda a xy + (\lambda - 1)y^2 - 4x - 2 = 0 \] represents a hyperbola, we need to analyze the coefficients of the quadratic equation in the form \(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\). ### Step 1: Identify Coefficients From the given equation, we can identify the coefficients: - \(A = 2 + \lambda\) - \(B = -2\lambda\) - \(C = \lambda - 1\) - \(D = -4\) - \(E = 0\) - \(F = -2\) ### Step 2: Condition for Hyperbola For the conic section to represent a hyperbola, the following condition must be satisfied: \[ B^2 - 4AC > 0 \] ### Step 3: Substitute Coefficients into the Condition Substituting the identified coefficients into the condition: \[ (-2\lambda)^2 - 4(2 + \lambda)(\lambda - 1) > 0 \] ### Step 4: Simplify the Inequality Calculating \(B^2\): \[ 4\lambda^2 \] Calculating \(4AC\): \[ 4(2 + \lambda)(\lambda - 1) = 4[(2\lambda - 2) + (\lambda^2 - \lambda)] = 4(2\lambda - 2 + \lambda^2 - \lambda) = 4(\lambda^2 + \lambda - 2) \] Now, substituting back into the inequality: \[ 4\lambda^2 - 4(\lambda^2 + \lambda - 2) > 0 \] ### Step 5: Further Simplification Distributing the negative sign: \[ 4\lambda^2 - 4\lambda^2 - 4\lambda + 8 > 0 \] This simplifies to: \[ -4\lambda + 8 > 0 \] ### Step 6: Solve the Inequality Rearranging gives: \[ 4\lambda < 8 \implies \lambda < 2 \] ### Step 7: Condition from the Determinant Next, we also need to ensure that the determinant condition is satisfied. The determinant \(\Delta\) for the conic section is given by: \[ \Delta = A \cdot C - \left(\frac{B}{2}\right)^2 \] Calculating \(\Delta\): \[ \Delta = (2 + \lambda)(\lambda - 1) - \left(-\lambda\right)^2 \] Expanding this: \[ = (2\lambda - 2 + \lambda^2 - \lambda) - \lambda^2 = 2\lambda - 2 - \lambda = \lambda - 2 \] Setting the determinant condition: \[ \lambda - 2 \neq 0 \implies \lambda \neq 2 \] ### Step 8: Combine Conditions From the conditions derived: 1. \(\lambda < 2\) 2. \(\lambda \neq 2\) Thus, the values of \(\lambda\) for which the equation represents a hyperbola are: \[ \lambda < 2 \] ### Final Step: Conclusion The equation represents a hyperbola for all values of \(\lambda\) such that: \[ \lambda < 2 \]
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    MOTION|Exercise EXERCISE-3|28 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-I)|4 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-2 (Level-I)|17 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos

Similar Questions

Explore conceptually related problems

71.The equation (x^(2))/(16-lambda)+(y^(2))/(9-lambda)=1 represents a hyperbola When a a

The equation lambda^(2)x^(2)+(lambda^(2)-5 lambda+4)xy+(3lambda-2)y^(2)-8x+12y-4=0 will represent a circle, if lambda=

2x^(2)+2y^(2)+2 lambda x+lambda^(2)=0 represents a circle for

The equation (x^(2))/(9-lambda)+(y^(2))/(4-lambda) =1 represents a hyperbola when a lt lambda lt b then (b-a)=

The equation (x^(2))/(9-lambda)+(y^(2))/(4-lambda)=1 represents a hyperbola when a

If the equation lambda x^(2)+4xy+y^(2)+lambda x+3y+2=0 represent a parabola then find lambda

If (x^(2))/(lambda+3)+(y^(2))/(2-lambda)=1 represents a hyperbola then

if the equation (10x-5)^(2)+(10y-4)^(2)=lambda^(2)(3x+4y-1)^(2) represents a hyperbola then

The equation (x^(2))/(2-lambda)+(y^(2))/(lambda-5)+1=0 represents an elipse,if