Home
Class 12
MATHS
Let ABCD be a square of side length 2 un...

Let ABCD be a square of side length 2 units. `C_(2)` is the fircle through the vertices A, B, C, D and `C_(1)` is the circle touching all the of the square ABCD. L is a lien through vertex A. A circle touches the line L and the circle `C_(1)` externally such that both the circles are on the same side of the line L. The locus of the centre of the circle is

A

ellipse

B

hyperbola

C

parabola

D

parts of straight line

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-I)|4 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos

Similar Questions

Explore conceptually related problems

A circle touches the line L and the circle C_(1) externally such that both the circles are on the same side of the line, then the locus of centre of the circle is :

Let ABCD be a square of side length 2 units. C_(2) is the circle through vertices A, B, C, D and C_(1) is the circle touching all the sides of the square ABCD. L is a line through A A line M through A is drawn parallel to BD. Point S moves such that its distances from the line BD and the vertex A are equal. If locus of S cuts. M at T_(2) and T_(3) and AC at T_(1) , then area of DeltaT_(1)T_(2)T_(3) is

A circle touches the line L and the circle C_(1) externally such that both the circles are on the same side of the line,then the locus of centre of the circle is (a) Ellipse (b) Hyperbola (c) Parabola (d) Parts of straight line

Let ABCD be a square of side length 2 units.C_(2) is the circle through vertices A,B,C,D and C_(1) is the circle touching all the sides of the square ABCD.L is a line through A.If P is a point on C_(1) and Q in another point on C_(2), then (PA^(2)+PB^(2)+PC_(2), then )/(QA^(2)+QB^(2)+QC^(2)+QD^(2)) is equal to

A circle C touches the x-axis and the circle x ^(2) + (y-1) ^(2) =1 externally, then locus of the centre of the circle C is given by

MOTION-HYPERBOLA-EXERCISE-4 (Level-II)
  1. If a hyperbola passes through the focus of the ellipse x^(2)/25+y^(2)/...

    Text Solution

    |

  2. Let ABCD be a square of side length 2 units. C2 is the circle through ...

    Text Solution

    |

  3. Let ABCD be a square of side length 2 units. C(2) is the fircle throug...

    Text Solution

    |

  4. Let ABCD be a square of side length 2 units. C(2) is the circle throug...

    Text Solution

    |

  5. A hyperbola, having the transverse axis of length 2 sin theta, is conf...

    Text Solution

    |

  6. Match the statements in Column I with the properties in Column II. A

    Text Solution

    |

  7. Let 'a' and 'b' be non-zero real numbers. Then, the equation (ax^2+ by...

    Text Solution

    |

  8. Consider a branch of the hypebola x^2-2y^2-2sqrt2x-4sqrt2y-6=0 with ve...

    Text Solution

    |

  9. Match the conics in column I with statements/ex- pressions in Column I...

    Text Solution

    |

  10. An ellipse intersects the hyperbola 2x^(2)-2y^(2)=1 orthogonally. The ...

    Text Solution

    |

  11. The circle x^(2)+y^(2)-8x=0 and hyperbola (x^(2))/(9)-(y^(2))/(4)=1 in...

    Text Solution

    |

  12. The circle x^2+y^2-8x=0 and hyperbola x^2/9-y^2/4=1 intersect at the...

    Text Solution

    |

  13. The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1. I...

    Text Solution

    |

  14. Let the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=...

    Text Solution

    |

  15. Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1If t...

    Text Solution

    |

  16. Consider the hyperbola H:x^2-y^2=1 and a circle S with centre N(x2,0) ...

    Text Solution

    |

  17. Let H :(x^2)/(a^2)-(y^2)/(b^2)=1 , where a > b >0 , be a hyperbola in ...

    Text Solution

    |