Home
Class 12
MATHS
Let m and n be the two positive integers...

Let m and n be the two positive integers greater than 1 . If `underset( alpha rarr 0 ) ( "lim")((e^(cos(alpha^(n)))-e)/(alpha^(m))) = -((e )/( 2))` then the value of `( m )/( n )` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the expression given: \[ \lim_{\alpha \to 0} \frac{e^{\cos(\alpha^n)} - e}{\alpha^m} = -\frac{e}{2} \] ### Step 1: Evaluate \(\cos(\alpha^n)\) as \(\alpha \to 0\) As \(\alpha\) approaches 0, \(\alpha^n\) also approaches 0. Therefore, we can use the Taylor series expansion for \(\cos(x)\) around 0: \[ \cos(x) \approx 1 - \frac{x^2}{2} \quad \text{for small } x \] Substituting \(x = \alpha^n\): \[ \cos(\alpha^n) \approx 1 - \frac{(\alpha^n)^2}{2} = 1 - \frac{\alpha^{2n}}{2} \] ### Step 2: Substitute \(\cos(\alpha^n)\) into the limit Now we substitute this approximation into the limit: \[ e^{\cos(\alpha^n)} \approx e^{1 - \frac{\alpha^{2n}}{2}} = e \cdot e^{-\frac{\alpha^{2n}}{2}} \approx e \left(1 - \frac{\alpha^{2n}}{2}\right) \quad \text{(using } e^x \approx 1 + x \text{ for small } x\text{)} \] Thus, we have: \[ e^{\cos(\alpha^n)} - e \approx e \left(1 - \frac{\alpha^{2n}}{2}\right) - e = -\frac{e \alpha^{2n}}{2} \] ### Step 3: Substitute into the limit expression Now we substitute this back into our limit: \[ \lim_{\alpha \to 0} \frac{-\frac{e \alpha^{2n}}{2}}{\alpha^m} \] This simplifies to: \[ \lim_{\alpha \to 0} -\frac{e}{2} \cdot \frac{\alpha^{2n}}{\alpha^m} = -\frac{e}{2} \cdot \lim_{\alpha \to 0} \alpha^{2n - m} \] ### Step 4: Determine the condition for the limit to exist For the limit to exist and equal \(-\frac{e}{2}\), the exponent of \(\alpha\) must be zero. Therefore, we set: \[ 2n - m = 0 \implies m = 2n \] ### Step 5: Find the ratio \( \frac{m}{n} \) Now, we can find the ratio: \[ \frac{m}{n} = \frac{2n}{n} = 2 \] ### Final Answer Thus, the value of \(\frac{m}{n}\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    MOTION|Exercise EXERCISE-3|57 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MOTION|Exercise Exercise -4 Level -II|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos

Similar Questions

Explore conceptually related problems

Let m and n be two positive integers greater than 1. If lim_(alpha rarr0)(e^(cos alpha^(n))-e)/(alpha^(m))=-((e)/(2)) then the value of (m)/(n) is

lim_(x rarr0)(e^(cos x^(n))-e)/(x^(m))=-(e)/(2) then find (4m)/(5n)

Find the value of alpha so that lim_(x rarr0)(1)/(x^(2))(e^(alpha x)-e^(x)-x)=(3)/(2)

Let alpha and beta be the roots of x^(2)+x+1=0 If n be positive integer,then alpha^(n)+beta^(n) is

If and n are positive integers,then lim_(x rarr0)((cos x)^((m)/(m))-(cos x)^((pi)/(n)))/(x^(2)) equal to

MOTION-LIMIT-EXERCISE-4
  1. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 then u...

    Text Solution

    |

  2. underset( x rarr 2 ) ( "lim") (( sqrt( 1- cos { 2 ( x - 2)}))/( x - 2...

    Text Solution

    |

  3. underset( x rarr 0 ) ( "lim")( (1- cos 2x) ( 3 + cos x ))/( x tan 4x) ...

    Text Solution

    |

  4. (lim)(xvec0)(sin(picos^2x))/(x^2) is equal to (1) pi/2 (2) 1 (3) ...

    Text Solution

    |

  5. Let p = underset( x to 0^(+)) lim(1 + tan^(2) sqrt(x))^(1//2x) , th...

    Text Solution

    |

  6. lim(x->pi/2)(cotx-cosx)/((pi-2x)^3)

    Text Solution

    |

  7. For each t in R let [t] be the greatest integer less than or equal to ...

    Text Solution

    |

  8. For x gt 0 , underset( x rarr 0) ( "Lim") [ ( sin x)^(1//x) + ((1)/( x...

    Text Solution

    |

  9. Let L = lim(x rarr 0) ( a - sqrt( a^2 - x^2) - x^2/4)/x^4, a>0.If L is...

    Text Solution

    |

  10. If underset( x to 0) lim [1+x log (1+b^(2))]^(1/x) = 2b sin^(2) the...

    Text Solution

    |

  11. If underset( x rarr oo) ( "lim") (( x^(2) + x+ 1)/(x+1) -ax -b) = 4, t...

    Text Solution

    |

  12. Let alpha(a) and beta(a) be the roots of the equation {(a+1)^(1//3)-1}...

    Text Solution

    |

  13. The largest value of non-negative integer a for which underset( x rarr...

    Text Solution

    |

  14. Let m and n be the two positive integers greater than 1 . If underset(...

    Text Solution

    |

  15. Let alpha, beta in R such that lim(x ->0) (x^2sin(betax))/(alphax-sin...

    Text Solution

    |

  16. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |

  17. Let f: R rarr R be a differentiable function with f(0)=0. If y=f(x) ...

    Text Solution

    |