Home
Class 12
MATHS
A function f (x) is given by the equati...

A function `f (x)` is given by the equation , `x^(2)f'(x)+2x `
`f(x)-x+1=0 ( x !=0)`. If `f(1)=0` ,then find the intervals of monotonocity of f.

Text Solution

Verified by Experts

The correct Answer is:
I in `(-oo, 0) uu (1, oo)` ; D in `(0, 1)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY

    MOTION|Exercise Exercise - 1 ( Objective Problems ) (SECTION-A ) ( FINDING INTERVALS OF MONOTONOCITY)|7 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 1 ( Objective Problems ) ( SECTION -B ) (FINDING VALUE OF VARIABLE GIVEN MONOTONIC BEHAVIOUR )|2 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -II|5 Videos
  • PARABOLA

    MOTION|Exercise EXERCISE - IV|33 Videos

Similar Questions

Explore conceptually related problems

The function f(x) satisfying the equation f^(2)(x)+4f'(x)f(x)+(f'(x))^(2)=0

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

Given the function f(x) = 2x + 7. Find f(0), f(5), f(7).

Find the interval of monotonocity of the function f(x)=(|x-1|)/(x^(2))

A function f is defined by f(x) = x^(2) + 1 . Find f(0), f(5), f(10).

The function f(x)=x^(2)"sin"(1)/(x) , xne0,f(0)=0 at x=0

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

A function f(x) is defined as f(x)=x^2+3 . Find f(0), F(1), f(x^2), f(x+1) and f(f(1)) .

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is