Home
Class 12
MATHS
Prove that tan x gt x + (x^(3))/(3) for...

Prove that `tan x gt x + (x^(3))/(3)` for all `x in (0, pi/2)`.

Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY

    MOTION|Exercise Exercise - 1 ( Objective Problems ) (SECTION-A ) ( FINDING INTERVALS OF MONOTONOCITY)|7 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 1 ( Objective Problems ) ( SECTION -B ) (FINDING VALUE OF VARIABLE GIVEN MONOTONIC BEHAVIOUR )|2 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -II|5 Videos
  • PARABOLA

    MOTION|Exercise EXERCISE - IV|33 Videos

Similar Questions

Explore conceptually related problems

Prove that 2sinx + tanx ge3x , for all x in [0, pi/2] .

Prove that tan x gt x for all x in [0, (pi)/(2)]

Prove the inequalities tan x gt x + x^(3) //3 " at" 0 lt x lt pi//2

Prove the following inequalities : tan x gt x + x^(3)//3 "if " (0 lt x lt pi//2)

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Let f (x) = 7 tan ^(8) x + 7 tan ^(6) x - 3 tan ^(4) x - 3 tan ^(2) x for all x in (-(pi)/(2), (pi)/(2)). Then the correct expression(s) is (are).

Using LMVT prove that : (a) tan x gt x in (0, pi/2) , (b) sin x lt x for x gt 0

Prove that 2sin x+tan x>=3xquad (0<=x<(pi)/(2))

Using mean value theorem,prove that tan x>x for all x(0,(pi)/(2))

Solve tan x+tan 2x+tan 3x = tan x tan 2x tan 3x, x in [0, pi] .