Home
Class 12
MATHS
Show that 1 + x log (x + sqrt (x ^(2)...

Show that ` 1 + x log (x + sqrt (x ^(2) + 1)) ge sqrt ( 1 + x ^(2)) AA x ge 0`

Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY

    MOTION|Exercise Exercise - 1 ( Objective Problems ) (SECTION-A ) ( FINDING INTERVALS OF MONOTONOCITY)|7 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 1 ( Objective Problems ) ( SECTION -B ) (FINDING VALUE OF VARIABLE GIVEN MONOTONIC BEHAVIOUR )|2 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -II|5 Videos
  • PARABOLA

    MOTION|Exercise EXERCISE - IV|33 Videos

Similar Questions

Explore conceptually related problems

Show that 1+x ln(x+sqrt(x^(2)+1))>=sqrt(1+x^(2)) for all x>=0

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

If cos x - y^(2) - sqrt(y - x ^(2) - 1 )ge 0 , then

Show that log(x+sqrt(1+x^(2))) 1

If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/(dx) = ?

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

Differentiate log((x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1)))

the value of int x*(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

int x(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx equals

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx