Home
Class 12
MATHS
Examine which is greater : sin x tan x o...

Examine which is greater : sin x tan x or `x^(2)`, Hence evaluate `underset(hto0)("lim") [(sin x tanx)/(x^(2))], " Where " x in (0,(pi)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
`{:(" "lim),(x rarr 0):} [(sin x tan x)/(x^(2))]=1`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY

    MOTION|Exercise Exercise - 1 ( Objective Problems ) (SECTION-A ) ( FINDING INTERVALS OF MONOTONOCITY)|7 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 1 ( Objective Problems ) ( SECTION -B ) (FINDING VALUE OF VARIABLE GIVEN MONOTONIC BEHAVIOUR )|2 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -II|5 Videos
  • PARABOLA

    MOTION|Exercise EXERCISE - IV|33 Videos

Similar Questions

Explore conceptually related problems

Examine which is greater : sin x tan x or x^(2) , Hence evaluate lim_(hto0) [(sin x tanx)/(x^(2))], " Where " x in (0,(pi)/(2))

Evaluate underset(x to pi//6)lim (2sin x-1)/(x-pi/6)

Evaluate underset( x rarr0 ) ( "Lim") ( 3 sin x - sin 3x)/( x- sin x )

Find underset( x rarr 0 ) ( "Lim") ( e^(sin x) -sin x -1)/( x^(2))

Find underset( x rarr0 ) ( "Lim") ( tan x - sin x )/( x^(3))

lim_(x rarr0)(tan x)/(sin^(2)x)

(d)/(dx)[underset(hto0)("lim")((x+h)^(4)-x^(4))/(h)]=

Find underset( x rarr 0 ) ( "Lim") ( e^(sinx) -sin x -1)/( x^(2))

Evaluate underset( x rarr0 ) ( "Lim")( e^(x) - e^(-x)-2x)/( x - sin x )

If underset(x to 0)lim ((sin n x)[(a-n) nx-tan x])/(x^(2))=0 , then the value of a.