Home
Class 12
MATHS
If p, q, r be real then the intervals i...

If `p, q, r` be real then the intervals in which, `f(x)=|(x+q^(2),pq,pr),(pq,x+p^(2),qr),(pr,qr,x+r^(2))|`

A

increases is `x lt - 2/3 (p^(2)+q^(2)+r^(2)), x gt 0`

B

decrease is `"(" -2/3(p^(2)+q^(2)+r^(2)), x")"`

C

decrease is `x lt - 2/3 (p^(2)+q^(2)+r^(2)), x gt 0`

D

increase is `"("- 2/3(p^(2)+q^(2)+r^(2)),0")"`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MONOTONOCITY

    MOTION|Exercise Exercise - 3 ( Subjective )|26 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 3 ( Subjective ) COMPREHENSION|4 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 2 (Level-II) ( Multiple Correct ) BASED ON ROLLE’S THEOREM, LMVT|2 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -II|5 Videos
  • PARABOLA

    MOTION|Exercise EXERCISE - IV|33 Videos

Similar Questions

Explore conceptually related problems

If p, q, r be real, then the intervals in which, f(x)=|(x+p^2,pq,pr),(pq,x+q^2,qr),(pr,qr,x+r^2)|

Factorise: p^(2)q-pr^(2)-pq+r^(2)

Knowledge Check

  • If p,q and r are rational numbers, then the roots of the equation x^(2) - 2px + p^(2) + 2 qr - r^(2) = 0 are

    A
    complex
    B
    pure imaginary
    C
    irrational
    D
    rational
  • If p.q.r are rational numbers. Then the root of the equation x^(2) - 2px + p^(2) + q^(2) + 2qr - r^(2) = 0 are :

    A
    Complex
    B
    Pure imaginary
    C
    Irrational
    D
    Rational
  • Similar Questions

    Explore conceptually related problems

    If pq + qr + rp = 0 , then what is the value of (p^(2))/(p^(2) - qr) + (q^(2))/(q^(2) - rp) + (r^(2))/(r^(2) - pq) ?

    If q^(2)-4pr=0,p>0 then the domain of the function f(x)=log(px^(3)+(p+q)x^(2)+(q+r)x+r)

    If p:q=3:4 and q:r=8:9 then p:r is

    If p,q & r are all non zero and p+q+r=0, prove that p^(2)/(qr)+(q^(2))/(rp)+(r^(2))/(pr)=3

    If p,qr are real and p!=q, then show that the roots of the equation (p-q)x^(2)+5(p+q)x-2(p-q=0 are real and unequal.

    If p, q, r are the roots of the equation x^3 -3x^2 + 3x = 0 , then the value of |[qr-p^2, r^2 , q^2],[r^2,pr-q^2,p^2],[q^2,p^2,pq-r^2]|=