Home
Class 12
MATHS
If f(x) = log (x – 2) – 1/x , then...

If `f(x) = log (x – 2) – 1/x` , then

A

`f(x)` is M.I. for `x in (2, oo)`

B

`f(x)` is M.I. for `x in [-1, 2]`

C

`f(x)` is always concave downwards

D

`f^(-1)(x)` is M.I. wherever defined

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY

    MOTION|Exercise Exercise - 3 ( Subjective )|26 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 3 ( Subjective ) COMPREHENSION|4 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 2 (Level-II) ( Multiple Correct ) BASED ON ROLLE’S THEOREM, LMVT|2 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -II|5 Videos
  • PARABOLA

    MOTION|Exercise EXERCISE - IV|33 Videos

Similar Questions

Explore conceptually related problems

The domian of definition of f (x) = log _((x ^(2) -x+1)) (2x ^(2)-7x+9) is :

If f(x) = ln (x - sqrt(1 + x^(2))) , then what is int f''(x) dx equal to ?

If f(x)=ln((x^(2)+e)/(x^(2)+1)), then range of f(x) is

Statement-1 : f : R rarr R, f(x) = x^(2) log(|x| + 1) is an into function. and Statement-2 : f(x) = x^(2) log(|x|+1) is a continuous even function.

The function f(x) = sin| log (x + sqrt(x^2 + 1)) | is :

Let f(x)=log(x+sqrt(x^(2)+1)), then f'(x) equals.

Let f(x) = log (1-x) +sqrt(x^(2)-1). Then dom (f )=?

if f(x)=log_(2)((1-x)/(1+x)) then f((2x)/(1+x^(2))) is equal to (A) f(x) (B) 2f(x) (C) -2f(x) (D) (f(x))^(2)