Home
Class 11
MATHS
lim(x->0)sin(m x^(@))/(sin(n x^(@)))...

`lim_(x->0)sin(m x^(@))/(sin(n x^(@)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (sin x /x)

lim_(x->0) (sin x /x)

m,n,in1^(+), then lim_(x rarr0)(sin x^(n))/((sin x)^(m)) equals

Find lim_( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+) equal

Find lim_( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+) equal

lim_(x rarr0)(sin x^(n))/((sin x)^(m)),(m

If m,n in N,lim_(x rarr0)(sin x^(m))/((sin x)^(m)) is 1, if n=m(b)0, if n>m oo, if n

lim_(x->0)(sin^2x)/x

f(n)=lim_(x->0){(1+sin(x/2))(1+sin(x/2^2)).......(1+sin(x/2^n))}^(1/x) then find lim_(n->oo)f(n)

lim_(x rarr0)(a^(sin x)-1)/(sin x)