Home
Class 12
MATHS
L e tf(x)={x^3+x^2+3x+sinx|(3+s in1/x ,)...

`L e tf(x)={x^3+x^2+3x+sinx|(3+s in1/x ,),x!=0. 0x=0` then the number of point where `f(x)` attains its minimum value is_____

Promotional Banner

Similar Questions

Explore conceptually related problems

L e tf(x)={(|x^3+x^2+3x+sinx|(3+sin(1/x)) ,, x!=0), (0 ,, x=0):} then the number of point where f(x) attains its minimum value is_____

Let f(x)={(|x^3+x^2+3x+sinx|(3+sin"1/x),x!=0),(0,x=0):} then number of points (where f(x)attains its minimum value) is

Let {{:(x^(3)+x^(2)+3x+sinx|(3+"sin"(1)/(x)),x ne0),(0,x=0):} Then the number of points where f(x) attrains its minimum value is ___________

If f'(x)=3x^(2)sin x-x cos x ,x!=0 f(0)=0 then the value of f((1)/(pi)) is

If f'(x)=3x^(2)sin x-x cos x x!=0 f(0)=0 then the value of f((1)/(pi)) is

Let f(x)=int_(0)^(x)3^t(3^(t)-4)(x-t)dt, (x>=0) , if x=a is the point where f(x) attains its local minimum value then find the value of 3^a

If f(x)=|x^(2)-3x+2|+|sinx| then number of points where f(x) is not differentiable in [-pi,pi] is

If f (x)= [{:( cos x ^(2),, x lt 0),( sin x ^(3) -|x ^(3)-1|,, x ge 0):} then find the number of points where f (x) =f )|x|) is non-difierentiable.

In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0):} then find the number of points where g (x) =f (|x|) is non-differentiable.