Home
Class 11
MATHS
Solve : 3^((log9 x))xx2 = 3sqrt(3)...

Solve : `3^((log_9 x))xx2 = 3sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve log_(x)3+log_(3)x=log_(sqrt(3))x+log_(3)sqrt(x)+(1)/(2)

Solve 3^((log_(9)x)^(2)-9/2log_(9)x+5)= 3 sqrt3.

Solve : sqrt(1+log_(0.04)x)+sqrt(3+log_(0.2)x)=1

Solve: (log)_(3)(sqrt(x)+|sqrt(x)-1|)=(log)_(9)(4sqrt(x)-3+4|sqrt(x)-1)

Solve: 4log_((x)/(2))(sqrt(x))+2log_(4x)(x^(2))=3log_(2x)(x^(3))

Solve the value of x:2(log_(x)sqrt(5))^(2)-3log_(x)sqrt(5)+1=0

Solve: log_2 (4/(x+3)) > log_2 (2-x)

Find the sum of all solutions of the equation 3^((log_(9)x)^(2)-(9)/(2)log_(9)x+5)=3sqrt(3)

Solve: log_(3)(sqrt(x)+|sqrt(x)-1|)=log_(9)(4sqrt(x)-3+4|sqrt(x)-1|)