Home
Class 11
MATHS
If y=a^(1/(1-(log)a x)) and z=a^(1/(1-(...

If `y=a^(1/(1-(log)_a x))` and `z=a^(1/(1-(log)_a y))`,then prove that `x=a^(1/(1-(log)_a z))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a^(1/(1-log_ax)), z=a^(1/(1-log_ay)) then prove that x=a^(1/(1-log_az))

If y=a^(1/(1-log_a x)), z=a^(1/(1-log_a y)), then the value of a^(1/(1-log_a z)) is (i) x/y (ii)y/x (iii)z/y (iv) x

If y=a^ ((1)/(1-log_a x), z=a^((1)/(1-log_ay) and x=a^k, then k

If y=a^(((1)/(1-log_(a)x)))" and "z=a^(((1)/(1-log_(a)y))) , then x is equal to

If y = a^((1)/( 1 - log_(a)x)) , z = a^((1)/(1 - log_(a)y)) , then x will be

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))