Home
Class 11
MATHS
Solve sqrt("log"(-x))=logsqrt("x"^2) (ba...

Solve `sqrt("log"(-x))=logsqrt("x"^2)` (base is 10).

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sqrt(log(-x)) = log sqrt(x^(2)) (base is 10).

Solve the equation,sqrt(log(-x))=log sqrt(x^(2)) (base is 10)

Number of real solution of the equation sqrt(log_(10)(-x)) = log_(10) sqrt (x^(2)) is

Solve log(-x)=2log(x+1)

Number of real solutions of the equation sqrt(log_(10)(-x))=log_(10)(sqrt(x^(2)))

Number of real solutions of the equation sqrt(log_(10)(-x))=log_(10)(sqrt(x)^(2))

Solve : 3^((log_(9)x))xx2=3sqrt(3)

Solve: 4^((log)_(2)log x)=log x-(log x)^(2) (base is e)

(x+1)^(log(x+1))=100(x+1)(base'is'10)

Value of x satifying (log)_(10)sqrt(1+x)+3(log)_(10)sqrt(1-x)=(log)_(10)sqrt(1-x^(2))+2 is a.0