Home
Class 11
MATHS
If sqrt((log)2x)-0. 5=(log)2sqrt(x ,) th...

If `sqrt((log)_2x)-0. 5=(log)_2sqrt(x ,)` then `x` equals odd integer (b) prime number composite number (d) irrational

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(e) log_(5) [sqrt(2x - 2) +3 ] = 0

IF log_(6)log_(2)[sqrt(4x+2)]+2sqrt(x)=0, then x=

The number log _(2)7 is (1990,2M) an integer (b) a rational number an irrational number (d) a prime number

Let x and y be positive numbers such that log_(9)x=log_(12)y=log_(16)(x+y) where x

log(x+sqrt(x^(2)+a))

The equation (log)_(x+1)(x- .5)=(log)_(x-0. 5)(x+1) has (A) two real solutions (B) no prime solution (C) one integral solution (D) no irrational solution

Solve sqrt(log(-x)) = log sqrt(x^(2)) (base is 10).

Let the solution of the equation 5^(1+(log)_(4)x)+5^(-1-1(log)_(4)x)=(26)/(5) be a and b,a>b, then the value of (a)/(b) is a.an odd number b.a rational number c.an irrational number d.a prime number

Let N=(log_(3)135)/(log_(15)3)-(log_(3)5)/(log_(405)3). Then N is a natural number (b) a prime number an even integer (d) an odd integer