Home
Class 11
MATHS
Prove that: 2^(sqrt((log)a4sqrt(a b)+(l...

Prove that: `2^(sqrt((log)_a4sqrt(a b)+(log)_b4sqrt(a b))-(log)_a4sqrt(b/a)+(log)_b4sqrt(a/b))dotsqrt((log)_a b)={2ifbgeqa >1 and 2^(log_a(b)` if ` 1 `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2^{{sqrt(log_a 4sqrtab + log_b 4sqrtab)-sqrt((log_a)4sqrt(b/a)+log_b 4sqrt(a/b))}sqrt(log_a b))= { 2 , b gea gt1and 2^(log_b a) , 1 ltblta

Prove that a sqrt(log_(a)b)-b sqrt(log_(b)a)=0

Prove that: (log_(a)(log_(b)a))/(log_(b)(log_(a)b))=-log_(a)b

(1)/(log_(sqrt(b))abc)+(1)/(log_(sqrt(ca))abc)+(1)/(log_(sqrt(ab))abc) has the value equal to

Solve: (log)_(3)(sqrt(x)+|sqrt(x)-1|)=(log)_(9)(4sqrt(x)-3+4|sqrt(x)-1)

log(((a^(-1)sqrt(3))^((1)/(3)))/(sqrt(b^(3)sqrt(a))))

Evaluate: log_(a^(2))b-:log_(sqrt(a))(b)^(2)

If log_(ab)a=4then log_(ab)((root(3)(a))/(sqrt(b)))=

If (log)_(a)3=2and(log)_(b)8=3, then prove that (log)_(a)b=(log)_(3)4

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))