Home
Class 12
MATHS
[vec a+2vec b-vec cquad vec a-vec Lquad ...

[vec a+2vec b-vec cquad vec a-vec Lquad vec a-vec I-vec c]=

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

( vec a+2 vec b- vec c)dot{( vec a- vec b)xx( vec a- vec b- vec c)} is equal to [ vec a\ vec b\ vec c] b. c. 2[ vec a\ vec b\ vec c] d. 3[ vec a\ vec b\ vec c]

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

Prove that,for any three vectors vec a,vec b,vec c[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec a,vec b and vec c are three non-zero vectors,prove that [vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec a , vec b , vec c are coplanar vectors, prove that |[vec a, vec b, vec c],[vec a.vec a ,vec a.vec b,vec a.vec c],[vec b.vec a, vec b.vec b, vec b.vec c]|=vec 0 .

Given vec a=x hat i+y hat j+2 hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j ; vec a_|_ vec b , vec adot vec c=4. Then [ vec a vec b vec c]^2=| vec a| b. [ vec a vec b vec c]^=| vec a| c. [ vec a vec b vec c]^=0 d. [ vec a vec b vec c]^=| vec a|^2

Given vec a=x hat i+y hat j+2 hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j ; vec a_|_ vec b , vec adot vec c=4. Then [ vec a vec b vec c]^2=| vec a| b. [ vec a vec b vec c]^=| vec a| c. [ vec a vec b vec c]^=0 d. [ vec a vec b vec c]^=| vec a|^2

Given vec a=x hat i+y hat j+2 hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j ; vec a_|_ vec b , vec a . vec c=4. Then a. [ vec a vec b vec c]^2=| vec a| b. [ vec a vec b vec c]^=| vec a| c. [ vec a vec b vec c]^=0 d. [ vec a vec b vec c]^=| vec a|^2

Given vec a=x hat i+y hat j+2 hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j ; vec a_|_ vec b , vec adot vec c=4. Then [ vec a vec b vec c]^2=| vec a| b. [ vec a vec b vec c]^=| vec a| c. [ vec a vec b vec c]^=0 d. [ vec a vec b vec c]^=| vec a|^2