Home
Class 12
MATHS
int(0)^(1000)e^(n-[x])...

int_(0)^(1000)e^(n-[x])

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1000)e^(x-[x])dx=

int_(0)^(1000)e^(x-[x])dx

The value of int_(0)^(1000)e^(x-[x])dx is equal to -

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of int_(0)^(1000) e^(x - [x]) dx (where [.] is the greatest integer function) equals

int_0^1000 e^(x-[x]) dx is equal to

int_0^1000 e^(x-[x])dx

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=