Home
Class 11
MATHS
If n >1,t h e np rov et h a t 1/((log)2...

If `n >1,t h e np rov et h a t` `1/((log)_2n)+1/((log)_3n)++1/((log)_(53)n)=1/((log)_(53 !)n)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n>1 then prove that (1)/(log_(2)n)+(1)/(log_(3)n)+............+((1)/(log_(53)n)=(1)/(log_(53!)n)

If n in N, prove that 1/(log_2x)+1/(log_3x)+1/(log_4x)++(1)/(log_n x)=1/(log_(n !)x)

Prove that ((log)_(a)N)/((log)_(ab)N)=1+(log)_(a)b

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

((log)_(2)3)(log)_(3)4(log)_(4)5(log)_(n)(n+1)=10 Find n=?

Show that: (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+...+(1)/(log_(43)n)=(1)/(log_(43!)n)

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=