Home
Class 13
MATHS
" Domain of the function "f(x)=sqrt(sin^...

" Domain of the function "f(x)=sqrt(sin^(-1)(2x)+(pi)/(6))

Promotional Banner

Similar Questions

Explore conceptually related problems

The natural domain of the function f(x)=sqrt(sin^(-1)(2x)+(pi)/(3)) is

The natural domain of the function f(x)=sqrt(sin^(-1)(2x)+(pi)/(3)) is

The domain of the function f(x) =sqrt(sin^(-1)x) is:

Domain of definition of the function : f(x)=sqrt(sin^(-1)(2x)+(pi)/(6)) for real valued x, is :

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+(pi)/(6)) for real-valued x is [-(1)/(4),(1)/(2)](b)[-(1)/(2),(1)/(2)](c)(-(1)/(2),(1)/(9))(d)[-(1)/(4),(1)/(4)]

The domain of the function f(x)= sqrt(sin^(-1)x-(pi)/(4))+log(1-x) is :

The domain of the function f(x)= sqrt(sin^(-1)x-(pi)/(4))+log(1-x) is :

The natural domain of the function sqrt(sin^(-1)(2x)+(pi)/(6)),x inR is :

The domain of the function f(x)=sqrt(sin^(-1)(log_(2)x)) is

The domain of the function given by f(x)=sqrt(sin^(-1)(2x)+pi/6) is